

Bridge Substructure and Foundation Design

By Petros P. Xanthakos

Download now

Read Online

Bridge Substructure and Foundation Design By Petros P. Xanthakos

Helps engineers optimize both structural reliability and economy by presenting both traditional allowable stress design concepts and newer, statistically-based load and resistance factor methodologies. This book provides a systematic study of bridge substructure and foundation elements, presents explicit methods of analysis, design and detailing, and offers case studies. It helps engineers understand the structural consequences of settlement and movement, evaluate alternatives to deep foundation systems, and presents solutions for designing piers for segmental bridges. It reflects the distinct evolution in bridge design concepts, theories and analysis methods that has recently taken place. Federal, state and municipal bridge engineers, consulting engineers designing transportation structures, public works contractors, structural and geotechnical engineers, transportation engineers, public works administrators, researchers, faculty and graduate students.

 [Download Bridge Substructure and Foundation Design ...pdf](#)

 [Read Online Bridge Substructure and Foundation Design ...pdf](#)

Bridge Substructure and Foundation Design

By Petros P. Xanthakos

Bridge Substructure and Foundation Design By Petros P. Xanthakos

Helps engineers optimize both structural reliability and economy by presenting both traditional allowable stress design concepts and newer, statistically-based load and resistance factor methodologies. This book provides a systematic study of bridge substructure and foundation elements, presents explicit methods of analysis, design and detailing, and offers case studies. It helps engineers understand the structural consequences of settlement and movement, evaluate alternatives to deep foundation systems, and presents solutions for designing piers for segmental bridges. It reflects the distinct evolution in bridge design concepts, theories and analysis methods that has recently taken place. Federal, state and municipal bridge engineers, consulting engineers designing transportation structures, public works contractors, structural and geotechnical engineers, transportation engineers, public works administrators, researchers, faculty and graduate students.

Bridge Substructure and Foundation Design By Petros P. Xanthakos Bibliography

- Sales Rank: #2592313 in Books
- Published on: 1995-06-30
- Format: Facsimile
- Original language: English
- Number of items: 1
- Dimensions: 9.90" h x 1.60" w x 8.40" l, 4.01 pounds
- Binding: Paperback
- 864 pages

[Download](#) Bridge Substructure and Foundation Design ...pdf

[Read Online](#) Bridge Substructure and Foundation Design ...pdf

Editorial Review

From the Publisher

Helps engineers optimize both structural reliability and economy by presenting both traditional allowable stress design concepts and newer, statistically-based load and resistance factor methodologies.

From the Inside Flap

Substructures and foundations constitute formidable components of bridges, and often represent more than half of the total bridge cost. The methods of analysis, design, and detailing are therefore important, and can influence the structural performance and project budget.

The current extensive body of knowledge documents the concerted efforts made to advance the theory and practice of bridge engineering. This progress has encompassed the design of piers, abutments, walls and foundations, and is also evident in our present understanding of soil- structure interaction. Notable improvements are reflected in the use of materials with better physical and structural characteristics, and in the rational and more explicit analysis of structural behavior.

In the present synthesis of the new and old concepts, traditional approaches have been integrated with recently evolved design philosophies, producing design options that enhance the field of structural analysis. Thus, the deterministic methodology represented in the past by the allowable stress design can now be supplemented or completely replaced by load factor design, a statistically-based probabilistic approach. Although many engineers believe that in this merge certain discernible gaps and inconsistencies are bound to remain for some time, the concensus of opinion is that in the field of bridge design there are now more workable alternatives that can be successfully applied to the entire structure and its foundation.

The introduction of load factor design is now a key feature of structural analysis in most areas of structural engineering and in most parts of the world. Whereas it draws from completed research as well as from judgment, it also signifies new provisions and major areas of change. It addresses load and force models, load factors, nominal resistance and resistance factors, limit states, and the soil-structure system on a global basis. A logical extension is the consideration of the variability in the characteristics of structural elements, which is treated as the variability in the loads. Thus, the underlying philosophy moves bridge design toward a more rational and probability-based procedure, although the application of the working stress method is not excluded as an independent option.

The text is developed to achieve the following objectives: (a) present a systems study of substructure and foundation elements; (b) introduce an independent design methodology demonstrating compliance with AASHTO and other relevant specifications; (c) cover both the allowable stress method and the LRFD approach; and (d) include a sufficient number of design examples and case studies that show how to obtain credible solutions.

Chapter 1 provides a general review of pier types, abutments, wall systems, and foundation elements. Structure appearance and esthetics are discussed in conjunction with economic aspects. It appears that the process of selecting the visual characteristics of bridges and substructures represents largely an effort to create forms pleasing to the public in a format described in national terms, although bridge esthetics should also be examined in the context of structural requirements and budget constraints. Chapter 1 is completed with a discussion of subsurface explorations and foundation investigations, review of specifications and standards, and the fundamentals of cost relationship between superstructure and substructure.

Loads and loading groups are reviewed in Chapter 2. A comparison of design loads used in the United States and in other countries shows a broad variability in load models and magnitudes. However, the present AASHTO loads and forces have been expanded by the load models of the LRFD specifications, and these are intended to enhance the live load representation. As a logical exercise of resourceful judgment, the new loads could be scaled by appropriate load factors to be compatible with other load spectra.

Chapter 3 deals with methods of analysis and design, and articulates allowable stress and strength design procedures. A main concern is the reliability and uncertainty in the structural analysis. In routine practice, safety in working stress design is ensured by the application of a single factor of safety, usually taken as the ratio of design resistance to the design load. With the LRFD approach, reliability is ensured by treating both loads and resistances as random variables. Safety in the case is defined in terms of the probability of survival or the probability of failure.

Conventional piers are discussed in Chapter 4. This category includes piers for all-concrete slab bridges, concrete deck bridges on multi-beam systems, two-girder systems with floor beams and stringers, truss bridges, and bridges across waterways and rivers. Although the great variety of functional, structural and geometric requirements implies a corresponding variety of pier forms and configurations, this seeming multiplicity is reduced and consolidated to a discussion of pier selection criteria, load effects, column analysis, seismic considerations, structural capacity under combined axial compression and bending, section analysis, pier frame analysis, and piers integral with the superstructure. This chapter includes also a review of pier protection design provisions in navigable waterways.

Excerpt. © Reprinted by permission. All rights reserved.

Substructures and foundations constitute formidable components of bridges, and often represent more than half of the total bridge cost. The methods of analysis, design, and detailing are therefore important, and can influence the structural performance and project budget. The current extensive body of knowledge documents the concerted efforts made to advance the theory and practice of bridge engineering. This progress has encompassed the design of piers, abutments, walls and foundations, and is also evident in our present understanding of soil- structure interaction. Notable improvements are reflected in the use of materials with better physical and structural characteristics, and in the rational and more explicit analysis of structural behavior. In the present synthesis of the new and old concepts, traditional approaches have been integrated with recently evolved design philosophies, producing design options that enhance the field of structural analysis. Thus, the deterministic methodology represented in the past by the allowable stress design can now be supplemented or completely replaced by load factor design, a statistically-based probabilistic approach. Although many engineers believe that in this merge certain discernible gaps and inconsistencies are bound to remain for some time, the concensus of opinion is that in the field of bridge design there are now more workable alternatives that can be successfully applied to the entire structure and its foundation. The introduction of load factor design is now a key feature of structural analysis in most areas of structural engineering and in most parts of the world. Whereas it draws from completed research as well as from judgment, it also signifies new provisions and major areas of change. It addresses load and force models, load factors, nominal resistance and resistance factors, limit states, and the soil-structure system on a global basis. A logical extension is the consideration of the variability in the characteristics of structural elements, which is treated as the variability in the loads. Thus, the underlying philosophy moves bridge design toward a more rational and probability-based procedure, although the application of the working stress method is not excluded as an independent option. The text is developed to achieve the following objectives: (a) present a systems study of substructure and foundation elements; (b) introduce an independent design methodology demonstrating compliance with AASHTO and other relevant specifications; (c) cover both the allowable stress method and the LRFD approach; and (d) include a sufficient number of design examples and case studies that show how to obtain credible solutions. Chapter 1 provides a general review of pier types, abutments, wall systems, and foundation elements. Structure appearance and esthetics are

discussed in conjunction with economic aspects. It appears that the process of selecting the visual characteristics of bridges and substructures represents largely an effort to create forms pleasing to the public in a format described in national terms, although bridge esthetics should also be examined in the context of structural requirements and budget constraints. Chapter 1 is completed with a discussion of subsurface explorations and foundation investigations, review of specifications and standards, and the fundamentals of cost relationship between superstructure and substructure. Loads and loading groups are reviewed in Chapter 2. A comparison of design loads used in the United States and in other countries shows a broad variability in load models and magnitudes. However, the present AASHTO loads and forces have been expanded by the load models of the LRFD specifications, and these are intended to enhance the live load representation. As a logical exercise of resourceful judgment, the new loads could be scaled by appropriate load factors to be compatible with other load spectra. Chapter 3 deals with methods of analysis and design, and articulates allowable stress and strength design procedures. A main concern is the reliability and uncertainty in the structural analysis. In routine practice, safety in working stress design is ensured by the application of a single factor of safety, usually taken as the ratio of design resistance to the design load. With the LRFD approach, reliability is ensured by treating both loads and resistances as random variables. Safety in the case is defined in terms of the probability of survival or the probability of failure. Conventional piers are discussed in Chapter 4. This category includes piers for all-concrete slab bridges, concrete deck bridges on multi-beam systems, two-girder systems with floor beams and stringers, truss bridges, and bridges across waterways and rivers. Although the great variety of functional, structural and geometric requirements implies a corresponding variety of pier forms and configurations, this seeming multiplicity is reduced and consolidated to a discussion of pier selection criteria, load effects, column analysis, seismic considerations, structural capacity under combined axial compression and bending, section analysis, pier frame analysis, and piers integral with the superstructure. This chapter includes also a review of pier protection design provisions in navigable waterways.

Users Review

From reader reviews:

Evelyn Looney:

Why don't make it to become your habit? Right now, try to ready your time to do the important take action, like looking for your favorite publication and reading a reserve. Beside you can solve your condition; you can add your knowledge by the reserve entitled Bridge Substructure and Foundation Design. Try to the actual book Bridge Substructure and Foundation Design as your pal. It means that it can be your friend when you truly feel alone and beside those of course make you smarter than in the past. Yeah, it is very fortunate for you personally. The book makes you more confidence because you can know every little thing by the book. So, let's make new experience as well as knowledge with this book.

Teresa Propst:

Do you certainly one of people who can't read satisfying if the sentence chained inside the straightway, hold on guys this specific aren't like that. This Bridge Substructure and Foundation Design book is readable by you who hate the straight word style. You will find the information here are arranged for enjoyable examining experience without leaving possibly decrease the knowledge that want to offer to you. The writer associated with Bridge Substructure and Foundation Design content conveys the idea easily to understand by most people. The printed and e-book are not different in the articles but it just different such as it. So, do you nonetheless thinking Bridge Substructure and Foundation Design is not loveable to be your top listing

reading book?

Patty Shield:

Reading a guide tends to be new life style within this era globalization. With reading you can get a lot of information that may give you benefit in your life. Using book everyone in this world can easily share their idea. Publications can also inspire a lot of people. Many author can inspire their particular reader with their story or perhaps their experience. Not only the storyplot that share in the publications. But also they write about the data about something that you need example of this. How to get the good score toefl, or how to teach your sons or daughters, there are many kinds of book that exist now. The authors in this world always try to improve their talent in writing, they also doing some research before they write to the book. One of them is this Bridge Substructure and Foundation Design.

Donald Tuel:

E-book is one of source of knowledge. We can add our expertise from it. Not only for students but also native or citizen require book to know the up-date information of year to year. As we know those publications have many advantages. Beside we all add our knowledge, could also bring us to around the world. With the book Bridge Substructure and Foundation Design we can get more advantage. Don't you to definitely be creative people? To be creative person must prefer to read a book. Simply choose the best book that appropriate with your aim. Don't end up being doubt to change your life at this time book Bridge Substructure and Foundation Design. You can more pleasing than now.

Download and Read Online Bridge Substructure and Foundation Design By Petros P. Xanthakos #IPDN6JU8LX2

Read Bridge Substructure and Foundation Design By Petros P. Xanthakos for online ebook

Bridge Substructure and Foundation Design By Petros P. Xanthakos Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Bridge Substructure and Foundation Design By Petros P. Xanthakos books to read online.

Online Bridge Substructure and Foundation Design By Petros P. Xanthakos ebook PDF download

Bridge Substructure and Foundation Design By Petros P. Xanthakos Doc

Bridge Substructure and Foundation Design By Petros P. Xanthakos Mobipocket

Bridge Substructure and Foundation Design By Petros P. Xanthakos EPub

IPDN6JU8LX2: Bridge Substructure and Foundation Design By Petros P. Xanthakos